Classification In Machine Learning
.png)
Classification In Machine Learning Classification is a process of categorizing a given set of data into classes, It can be performed on both structured or unstructured data. The process starts with predicting the class of given data points. The classes are often referred to as target, label or categories. The classification predictive modeling is the task of approximating the mapping function from input variables to discrete output variables. The main goal is to identify which class/category the new data will fall into. Let us try to understand this with a simple example. Heart disease detection can be identified as a classification problem, this is a binary classification since there can be only two classes i.e has heart disease or does not have heart disease. The classifier, in this case, needs training data to understand how the given input variables are related to the class. And once the classifier is trained accurately, it can be used to detect whether heart disease is there or no...